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ABSTRACT

The r'aoid two-dimensional slewing end vibrational

control of the unsymmetrical flexible SCOLE (Spacecraft

Control Laboratory Exper'iment) with multi-bounded controls

has been considered. Pontr'vagin's Maximum Principle has

been applied to the nonlinear' equations of the system to

derive the necessary conditions for' the optimal control.

The resulting two-point boundary-value problem fs then

solved by using the quasilinearization technique, and the

near-minimum time is obtained by sequential 1y shortening the

slewing time until the controls are near the bang-bang type.

The trade-off between the minimum t_me and the minimum

flexible amplitude requirements has been discussed. The

numerical r'esults show that the r'esponses of the nonlinear"

system are significantly rill:far'ant fr'om ti_ose of the

linear'ized system for' rapid slewing. The SC,..'.,LE station-

keeping closed-loop dynamics are re-examined by employing e

slightly differ'ent method for" developing th-- equations of

motion fn which higher" or'der" terms in the exp_'essions for

ti_e nlast modal shape functions a_'e now inc:lud-_d, If no

force .actuators .st',:; mounted on the be,-sm, the modal amplitude

t'e:;pon_us a_'e mc_'e ..-_si lv excited th,_n _,_her_ t:he:e actuators

are _nc 1 uded. _yst-_m _'e:__!:c.r_s_s ,sr'_-; ,Jepen..i,ent on L, ok.h the

torc_ ._ctu.-:_.Lu, r' i.?c,._t:i,._i_s _s wail ,as th,_ cf:__:_ _ .:;i_d cont,'o]

'#ef,]h_fn,4 ma_._'lx _!-em,ep, tg, :',. p_'el [rni_]._I"f -_:u_.J'¢ ,;,n the

effect c.f a,'.-t u,_ t:.:£,t' 11,,£I_5_, Oi_ th,_ C 1 :':BeY.i - I _(__ib ._VI],9111i C'; _.,f ] ,kit '_4_
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s#ace systems is conducted. A numerical example based on a

coupled two-mass two-spl'ing system illustr'ates the effect of

changes caused in the mass and stiffness matrices on the

closed-loop system eigenva]ues. Zn cer'tain cases the need

for" redesigning contro] laws pr'evious]y synthesized, but not

accounting for" ,actuator" masses, is indicated,
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I. INTRODUCTION

The present grant, NSG-t_lg, Supplement I1, continues

the r'esearch effort initiated in May 1977 and accomplished

in the previous grant years (May 1977 - May 1988) as

r'eported in Refs. 1-15 _ . This research has concentr'.ated on

the control of the orientation and the shape of very large,

inherently flexible proposed future spacecraft systems.

Possible future app]ications of such lar'ge spacecr'aft

systems (LSS) include: large scale multi-beam ,antenna

communication systems; Earth obser'vation ,and resource

sensing systems; or'bitally based e]ectr'onic mail

transmission; as p]atfor'ms for" or'bita] based telescope

systems; ,and as in-orbit test models designed to compar'e the

pe_'for'mance of flexible LSS systems with that predicted

based on computer" simulations and/or' scale model Earth-based

laboratory exper'iments. Tn r'ecent years the grant r'esearch

has focused on the orbital model of the Spacecraft Control

Labor'atol'y Experiment (SCOLE) first proposed by Taylor and

Balakr'ishnan 16 in 1983.

The present report is divided into five ci_apte_'s.

Chapter" IZ is based on a paper' pr'esented at the 1989

AAS./AIAA Astr'odynamics Conference and describes rapid two-

References cited in this r'epor't a_'e listed separately at

the enci of each chapter'.
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dimensional slewing and vibration contro] of the

asymmetrical SCOLE configuration where the beam flexibility

is inc]uded in the model. Pontr'yaginJs maximum principle

has been applied to the nonlinear' equations of the system to

derive the necessary conditions for the optima] contr'o]

where the Shutt]e mast, and r'eflector (mu]tip]e-bounded)

controls are consider'ed. The r'esu]ting two-point boundary

value problem is then solved by u#fng the quasilinear'ization

technique, and the near minimum time is obtained by

sequentially shortening the slewing time until tile controls

are nearly of the bang-bang type. The trade-off between the

minimum flexible amplitude and minimum slewing time are

discussed.

In the next chapter" (Chapter' III) a s]ightly difife_'ent

method for developing the equations of motion for the SCOLE

system during stationkeeping is pr'esented invo]ving a more

direct appr'oe,,.ch in m._t_'ix man_pulation, and _ncludil_g higher'

or'de_" terms in tile expressions foi' the mast modal shape

functions. Ciosed-fr_op responses for the system mode]ed by

this approach ,_r'e comp,_ted with similar _'esponse:; as

pl'eselqted in Ref. 1,_ (based on the F'i-_.D. thesis c,f C,N.

Oiar'r'a) for the same r'ange3 of the state and contr'o! pena]ty

m,_tr'ic,z.s. Fu,'ther" ernph.-_sis is pi,_ce,J on ev,aluating how the

flexfb]e modes of b_he 5,,:OLE mast ,ar',_ _,,cite,t dur'fr_._q

repr'esentat_ ve s tatic, nkeei-_i_,_ opet {_t ior_;.
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A preliminary study of the effect of actuator' mass on

the des#gn of control laws for' large space systems _s the

subject of Chapter' IV. A numer'ica] example based on a

coupled two-mass two-spring system _s selected to i]lustrate

tile.effects of varying the masses and stiffnesses (one at a

time) on the c]osed-loop eigenvalues, and to deter'mine what

ctlanges should be incorporated into the control laws

oreviously designed, but nct accounting for" actuator" masses.

Finally, Chapter" V de£cr'ibes the main 9ener'al

conclusions together' with ._ener'a] recommendations. At the

end of the grant year' reported here and after" submission of

out" pr'oposa] for' the,_ 1989-90 grant year '17, tile thrust of

this research has been r'ed_r'ected to provide more direct

support to the new NASA Contr'ols/Str'uctur'es Inter'action

(CSI) program.
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II. RAPID IN-PLANE MANEUVERING OF THE FLEXIBLE ORBITING SCOLE

The rapid two-dimensional slewing and vibra-

tional control of the unsymmetrical flexible

SCOLE (Spacecraft Control Laboratory Experi-

ment) with multi-bounded controls has been

considered. Pontryagin's Maximum Principle

has been applied to the nonlinear equations

of the system to derive the necessary

conditions for the optimal control. The

resulting two-point boundary-value problem

is then solved by using the quasilineariza-

tion technique, and the near-minimum time

is obtained by sequentially shortening the

slewing time until the controls are near

the bang-bang type. The trade-off between

the minimum time and the minimum flexible

amplitude requirements has been discussed.

The numerical results show that the

responses of the nonlinear system are

significantly different from those of the

linearized system for rapid slewing.

INTRODUCTION

The large-angle maneuvering and vibrational control

problem of a flexible spacecraft has been the subject of

considerable research by many authors through different

approaches to various structural modelsl. "_ Among them, many

authors placed their efforts on different control strategies
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while using rather simplified spacecraft dynamic models. A
few investigators have considered different and yet

complicated structural models_ "4 Among all the control

strategies used, Pontryagin's Maximum Principle is an

important and a basic method to such a coupled nonlinear

dynamics and control problem. Although this method usually

produces open-loop control strategies, it has the advantage

of being able to handle control problems of more complicated

structures (nonlinear dynamics and control), and it may

prove to be useful in control-structure interaction

problems. Unfortunately, most of the applications of this

method to the slewing problem have been restricted to some

simplified model, for example, a central hub with two or

four symmetrically connected beams. Numerical problems

appear to have limited the extension of the techniques based

on the Maximum Principle to more complex system models[

However, by considering such extensions, we may

encounter many interesting phenomena and produce many useful'

results. In this paper, we aim at using the Maximum

Principle for a slightly more complicated structural model,

namely, the 2-dimensional orbiting SCOLE[ The complexity of

the present problem stems from three considerations: (I)

more nonlinear terms than before included in the dynamical

equations; (2) more control variables used in this system;

and (3) the rapid slewing or near-minimum time slewing which

may produce large flexible modal amplitudes. We hope,

through the present analysis, to reveal, to some extent, how

the nonlinear system is different from the linearized

system, and how some parameters, such as the slewing time,

and the weighting elements on the controls, affect the

responses of the system.

This paper consists of three parts: formulation of the

system equations by using Lagrange's formula; derivation of

the optimal control problem which results in the two-point

boundary-value problem (TPBVP); and simulation of slews for

different boundary conditions and control variables.

2.2



is

SHUTTLE

REFLECTOR
io

I xr\

Or

BEA_

Z

k s

k o

Fig. I Configuration of the Planar Orbiting SCOLE

FORMULATION OF THE STATE EQUATIONS

STsLem Confi_uraLio.

The Shuttle-beam-reflector system discussed in this

paper is shown in Fig. i. The Shuttle and the reflector are

considered to be rigid bodies. The beam is assumed connected

to the Shuttle at its mass center, o In addition, the

reflector is attached to the beam at an offset point, a r ,

which is x away from the mass center of the reflector, o
r r

Both beam ends are considered to be fixed.

Fig. 1 shows the structure in the pitch plane, since

our present purpose is to analyze the planar motion of the

system. The equations of motion in this plane are also valid

for the motion in the roll plane, except for that case the

inertia parameters are different.

Three coordinate systems are used in Fig. I: (k0 ,i0 ),

the orbit's axes; (k ,i ), the Shuttle fixed coordinates;
S
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and (kr,ir), the reflector fixed coordinates. 8 is the

rotation angle of the Shuttle with respect to the orbit

coordinates. The transverse displacement of the beam from

its undeformed position is _(z,t), where z is the coordinate

along the k axis, and t is time. If the displacement is
$

assumed to be small, then, an approxmate expression for the

rotation angle of the cross section of the beam is,

_ (z,t)=_(z,t)/_z.

The free vibration of this structure can be considered

as a free-free beam (Bernoulli-Euler type) vibration problem

with boundary conditions including the masses and moments of

inertia of the Shuttle and the reflector. The partial

differential equation for this problem can be solved by

using the separation of variable method, in which _(z,t) is

assumed as

_(z,t)= E ,_ (z)9_ (t) (I)

where _ (z) is the ith mode function (shape) and 9_ (t) is

the associated amplitude of the ith mode. The natural

frequencies and mode shapes for the pitch and roll motions

are listed in Ref. 5, and will be used in this paper.

If the first n modes of the flexible system are used

in the formulatiom of the dynamical equations of the system,

the expression in Eq. (I) can be rewritten as

n

w(z,t)= E ,_ (z)9;. (t)_ T (z)9(t) (2)

where ,_T=[,_i ... ,_ ], 9=[9 1 ... 9n ]T Then, we have,

_=_ _,_/#t=_T 9 (3 )

_,/ =t (Z, t)=(d_L'T/dz) O =_ ''T_9 (4)

_2,,_/_z 2 =(d _ _J/dz 2 )_=_,,T (5)

,s,_j =,_'r (zj)-,so (6)

8 and 9 are the generalized coordinates of the system.
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KineLi c P.ner_y

The kinetic energy of the system, T, consists of three

parts, T,, T b , T r , representing the kinetic energy of the

Shuttle, the beam, and the reflector, respectively,

T=T + T (7 )s +Tb r

where

T =LI 62
$ 2 S

L'r'J " . .Tb=2 0 #[ (_2 +Z _ )62 +_ +2Z_,)8 ]dz

o •

T =_-I (8+_)2 +t._m (_2 +L 2 )6' +2L9,_ + 2
I' 2 _" z' 2 _" r _" l"

where I and I are the moments of inertia of the Shuttle

and the reflector with respect to the attatchment points,

respectively, m is the mass of the reflector, L is the
r

length of the beam, _ _,_(L,t), and ¢ =w, (L,t).

PotenLial Ener_z

The elastic potential energy of the beam is

v.-EIfL (d2_)2dz
-7-Jo _z _

where EI is the constant flexural rigidity of the cross

section of the beam.

(8)

(9)

(IO)

(II)

Generalized Forces

The virtual work done by the controls is

3W=u 88+ E u ,_r (12)
1 j:2 J .I

where u is the control torque on the Shuttle, and u s and u

are the actuator force vectors on the beam, and o 4 is the
control force vector on the center of the reflector. The

$e, and 8r are the associated virtual displacements.
J

From Fig. I, we have,

uj=uj [cos(8 +_j )i ° -sin(@ +¢j )k ° ]

rj=(z cosA-_ sin_)k0 +(z sinS+,,,cos_)ij- j j j - 0 ' j=2,3,4.
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where uj is the magnitude of u j; zj is the location of uj

axis; =_(z t); and _j=_(zj t). In thisalong the k _j j,

paper, zz=L/3, z =2L/3, and z4=L. After substituting these

expressions into Eq. (12), and noting the expression for 8_

in Eq. (6), we can get,

4 4

8W=[u, + E uj (zjcos_j+_jsin_j)]88 + Z _T(zj )UjCOS_j_ 9
j-'2 j=2

=QB_8 +Q'9_ (13)

where _ and % are the generalized forces associated with 8

and 9, respectively.

Dynamioal EquaLiuns

After substituting the expressions (2-5) into the

kinetic energy in Eqs. (7-10) and the potential energy in

Eq. (II), and using the following maxtrix/vector notations,

flPw_dz+mrw_=gT[_IP_v_TdZ+mr'Q(L)_(L)T]D=gTM_Dr

fl " r r r +I ,_'(L)_' (L) T]_=_TM 0p,,,5dz+m + =,; [M ,

f: EI(dz')'dz'-dZ=DT (;i EI'Q'''p''Tdz)D=DTK9

#z_dz+I /,+mrLwr=GT[ L L,_(L)I=G T
r 0# z_#dz+Ir _#'(L) +m r

we can obtain the Lagrangian of the system,

i-*2_2 [I+DTM29+2mr Xr (wrc°SCr-Lsin_r )]

+mx (_ ,,_cos_r-_,_ sin_ -_ sin_r )]+6 [_T m2 r r r r r r r

+* "TM ° -m xr sin_ r _ TV9 _ 4pr _'_ Knr " _' -F 9

m

(14)

where f=I,+Ir +If ?z_dz+mr Lz is the total moment of inertia of

the undeformed system. The Lagrange equations,

d ((_L) c?t_ d (c?t) c?L_

of the system can be obtained in the following matrix form,

2.6



M(_) 6 =F(6, _, D)+B(D)u
(15)

with

/+9TM29+2mr Xr (_'_rCOS_r -Lsin_br )

M(9)=Lm 2 +M 19cos_r-m sin_r symmetry 1Ms -M sin_r

[-26Gr(M _+toocos_ -Mi_si_ )+% %' (r_cos_+_ si_ )1F=[8' (M 9+m cos, r-M I_sir_br )+(;rMT-28M )_ coser-K 9

'I z cos_ -_z sin_b z cos_b -_:,sir_b z cos_b sin_

B= 2 Z 2 3 _ o 4 4 --_'_4 4

O ,_(Z )COS¢2 ,_(Z )COS¢_ _(Z )CO_,

where u=[u u u u ]r is the control vector. Other
1 2 _ _,

notations used in these equations are

M,--mr xr '_ (L)'_r (L) , M= =M, +M r,, M_ =MI -MTi ;

M --m x _t (L)Vr (L);
r r

m =m x [,_(L)+L_, (L)], m =m x [,Q(L)-L_' (L)]

(16)

(17)

I
(18)

We need the following linearized version of Eqs.

to compare the responses of the two systems.

_,_m 0 1 z z
= .... + 2 0

I _oJ _ ._(z ) _(z

L

) ,_(L)

(15)

u
(Ig)

For convience, by introducing the notations

yT =[8 , Dr ]=[ Yl t ' . , yt k ], k=n+l, y_ =y_ , yT =[ yT , yz

Eqs. (15) can be rewritten in the state form

Y% -'Y2

y =M-* (9)[F(9, Y2 )+B(D)U]

(20)
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DERIVATION OF THE OPTIMAL CONTROL PROBLEN

ObjecLive

The purpose of this paper is to find the optimal

controls which rapidly drive the system from an initial

state, y(t=0), to a final required state, y(t=t_ ). Since the

magnitudes of these controls are, in pratice, bounded, the

optimal controls for the minimum time slewing problem are

usually of the bang-bang type. However, this kind of control

will generally introduce large flexible amplitudes.

Therefore, a near-minimum-time slew is of primary interest

to us.

Necessary Conditions

Instead of starting from the minimum time control

problem, we set out to deal with the optimal control problem

with a quadratic cost function,

JUlft_ (Y_QI Y, +Y_Q2 Y_ +uTRu)dt (21)

where QI ' Q_ ' and R are weighting matrices, t_ is the given

slewing time. This kind of problem has been considered by a

list of authors. However, in their analysis, t r is fixed and

there is no limitation on the magnitude of the controls. On

the contrary, in the present problem, the slewing time t_ is

no longer fixed, because we want to find a rapid slew or a

near-minimum-time slew. The magnitudes of the controls, u,

are also bounded,

lu_ i_u_b, i=1,2,3,4. (22)

Our strategies to solve this problem are described in

the following. First, the necessary conditions based on Eqs.

(20-21) are derived. Then, the costraints, Eq. (22), are

imposed on these necessary conditions to modify the

controls. Finally, in the solution process of the resulting

TPBVP, the slewing time is shortened sequentially, in order

to find the near-minimum-time slewing. As we have discussed

in Ref. 6, when the slewing time is shortened, the optimal

control, will approach the optimal control of the minimum

time slewing problem, that is, becoming the bang-bang type.

It is clear that, when the controls approach the bang-bang

type, the value of the index I in Eq. (21) will increase and

approach its maximum value.
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The Hamiltonian of the system is,

where %1 and %t are the costate vectors associated with YL

and y_ , respectively. By using the Maximum Principle, the

necessary conditions for the unresticted optimal control

problem are the dynamical equations (20) plus the following

differential equations for the costates,

....... >(F+Bu)- _ -- >u (24)

where
' l

special matrix (similar for <%_M "i _B

expressions for the optimal control,

_-_-0,_H- u=-R- i BTM - ,_2

The control rules in Eq.

following expressions _,

-u_ b if u, <-u_ ]

u;,= u. if lu;, l<u_ b

u_ b i f u. > u;,

represents a

>); as well as the

(25)

(26)

(26) are then modified by the

where

u =-(R-*BTM-I,% ) ,
,,c 2

i=I,2,3,4.

(27)

By substituting the control expressions into the dynamical

equations (20) and the costate equations (2_), we can

obtain a set of _(n+l) differential equations for the states

and the costates. To obtain the control, u, we need to solve

this set of differential equations with the _(n+l) given

boundary conditions: y(t=0) and y(t=t6 )o This problem is

called TPBVP because the B.C.'s are specified at the two

ends of the slewing period.

SoluLion of _he TPBVP

The quasilinearization algorithm and the method of

particular solutions are used to solve this nonlinear TPBVP[
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NUMERICAL RESULTS

Some common parameters of the SCOLE used in this paper

are,

EI=4xl0 _ ib-ft 2 , p=0.09554 slug/ft, L=I30 ft,

m =6366.46 slug, m =12.42 slug,
S

u,b=10,000 ft-lb, u2b--u b=10 Ib, u45=800 lb.

Other different structural parameters are listed in Table I.

Table l

STRUCTURAL PARAHETERS OF THE R-D SCOLE

Roll-Axis Pitch-Axis

I 905,443 6,789 I00 slug-ft 2

[ 18,000 g,336 slug-ft 2
P

x 32.5 18.75 ft
P

w i 0.319954 0.295016 hz

_ 1.287843 1.645292 hz

_ 4.800117 4.974182 hz

All the numerical tests done in this paper are

rest-to-rest slews, that is. they use the same boundary

coditions for the states: 9(t=O)=O, 9(t=t_ )=0; 8(t=0)=0, and

8(t=t_)=8 , where 8 is the required slewing angle, ranging

from 20 deg to 180 deg. All these slewings can be divided

into the following 3 groups.

Group i

In this group, only the Shuttle control torque has been

used, i.e., u=u i The weighting matrices Q =Q2=O and the

weighting on u I , rl=10-_ . Figs. 2 show the near-minimum-time

slewing about the roll axis, through 90 deg (Fig. 2A). The

near-minimum-time, t_ , has been calculated to be 27.8 sec.

The control torque is near the bang-bang type (Fig. 2F). The

maximum amplitude of the first mode of the linearized system

is 9.2 ft (Fig. 2B), which is less than I0_ of the total

length of the beam. The first modal amplitude response of

the nonlinear system has a shape similar to that for the

linearized system, but with a shifting of the amplitude. The

second mode and the third mode of the nonlinear system have

quite different time histories from their linearized
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counterparts (Figs. 2C-D). The rotation angle, _r ' and the

displacement, _ , at the reflector end of the beam are also

plotted in Figs. 2A and 2E. They have shapes similar to the

amplitude of mode I, because the first mode dominates the

deformation of the beam for this slew.

The slewing about the pitch axis has responses similar

to those about the roll axis. To make a comparison, the

results of many other slewings in this group are listed in

Table 2. 91ma x is the maximum value of the first modal

amplitude of the linearized system. Note that the number of

vibrational cycles of the first mode increases as the slew

angle, 8 , increases.

Table

RESULTS OF GROUP I

Roll Axis Pitch Axis

8 (deg) t_ (s) DL max (ft) tf (S) 9t max (ft)

20 15.99 7.5 _ 31.85 2.8 a

45 20.56 9.5 _ 48.29 2.8 b

90 27.80 9.2 a 67.05 2.8 ¢

180 40.14 9.5 b 95.23 2.8 d

aOne cycle. %Two cycles with one big peak and one small

peak. C Two cycles with two equal peaks, dThree cycles with

two big equal peaks and one small peak.

Group

In this group, the force on the reflector, u 4 , is added

to the system. The weighting on the states, Qt and Q2 ' are

still chosen to be zero, and r =I0 -_ . The effect on the
[

slewing responses of adding the control force u 4 may be

analyzed by changing the values of t_ and/or r4 , the

weighting on u 4 Since the first modal amplitude dominates

the deflection of the beam, our main concern will

concentrate on the variation of the first modal amplitude.

To illustrate the effect of the parameters, t_ and r 4

on the time response of the first modal amplitude, let's

2.11



consider a special case without lose of generality, i.e.,

the 90 deg slewing about the roll axis, the same case

plotted in Figs. 2 but with the control u 4 added. In Fig.

2B, the time response of the first modal amplitude can be

sin(2_t/t r ) This responseapproximately expressed as -Di m_x

is 180'out-of phase with the control u I (Fig. 2F), because

of the inertia effect of the flexible beam. However, when u
4

is added to the system, the torque produced by u 4 will

accelerate the slew and balance the deflection of the beam

produced by u
i

It is not hard to imagine, from the physical point of

view, that when u 4 increases to a large value, the response

of the first modal amplitude may be in-phase with u, (or

, . . sin(2_t/t_). Therefore between theu4) i e , D, (t)_DLmax

small values and the large values of u 4 , there must exist a

critical value at which the phase of the first modal

response changes from out-of-phase to in-phase. It is also

expected that during the "phase-change" period, the maximum

value of the first amplitude becomes a minimum. This

conjecture, fortunatly, has been proved to be true in our

calculations.

One way to change the value of u 4 is to change the

value of r 4 , for fixed slewing time t_ . Another is to change

t_ while mantaining r 4 fixed. These results are plotted in

Figs. 3A-3B. We should point out that for large values of r 4

(Fig. 3A) or large values of t_ (Fig. 3B), u 4 is small and

the response of the first modal amplitude is out-of-phase.

On the contrary, small r4 or t r results in large u 4 and,

therefore, in-phase response. In each of these cases, a

minimum value of D1ma × exists. It is also interesting to

know that, at these critical values of r 4 or t_ , 9(t)

experiences two oscillation cycles with two equal peak

values (or valley values) of the linearized system, i.e.,

9(t)_DLm_×sin(4_t/t_ ). The dotted lines in Figs. 3A-B

represent the nonlinear system responses. The nonlinear

response has a shift from the linear response, especially

when t_ or r 4 is reduced. Also, we have observed that, at

the critical points, although the amplitudes are small in

value, the linear and the nonlinear systems have quite

different time response histories.
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A complete relationship between the three parameters,
t_ and r can be investigated through the_i max ' ' 4

3-dimensional surface in Fig. 4. The lower ditch on this

surface represents the minimum value area of 91ma x Although

the global minimum value of 91ma x occurs when t_ is quite

, =0 41 ft,large there exists a local minimum value, 9, max .

around the middle of the ditch, where t_=23.881 sec and

r =0.86. This important point can be chosen as the trade-off

point between rapid slew and small amplitude requirements,

at which neither t_ nor 91ma x is too large. The response

shapes of the first modal amplitude for the different values

of t_ and r4 are different. In the hilltop areas, only one

vibrational cycle of 91 (t) exists, but along the deep

valleys of the ditch, 9, (t) has two vibrational cycles with

two equal peaks. More surprisingly, at the local minimum

point mentioned above, 91 (t) experiences three vibrational

cycles with three equal peaks. The responses for this case

are shown in Figs. 5, where the linear and nonlinear systems

are quite different in spite of the small Modal amplitudes.

Group 3

Based on the example shown in Figs. 5, the controls, u

and u are added to the control system in this group. The

associated weightings on these controls are r =I0.0 and
2

r =20.0. Also, the weightings on 91 and 95 are selected as

200.0 and I000.0, respectively, to show the further

reduction of the modal amplitudes. These results are plotted

in Figs. 6. Compared with the results in Figs. 5, the modal

amplitudes have been slightly reduced and the maximum value

of u has been reduced due to the addition of u and u
4 2

Note that u is not shown in Figs. 6 because of its
!

similarity to that in Figs. 5.

CONCLUSI OH

The Maximum Principle has been applied to the rapid

slewing problem of the planar flexible orbiting SCOLE. The

dynamical equations used contain more nonlinear terms than

those used by other authors, and the responses indicate the

large differences between the nonlinear and the linearized

systems, not only in the rapid slews where large modal

amplitudes are involved, but also in the small-amplitude

slews. The analysis between the relationship of the
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t r and r , indicates that the conflictparameters, 91m_x' ' 4
between the rapid slew and the small flexible amplitude
requirements may be compromised for multi-input control
systems. The effects of these parameters on the
3-dimensional SCOLE model slewing responses need to be
investigated.
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III. CONTROLOF THEORBITINGSCOLEWITHTHEFIRSTFOURMODES

A. Formulation

In order to complete the calculation of the elements of the _late and control influence matrices

for the orbiting SCOLE system linearized about the nominal station keeping motion, we list all

equations of the system which are based on the formulation of Ref[1] as follows:

1. Generic Modal Equations of the Beam

An + to 2 An 1
n L

2(.o 0

----_- G2( [3n )h 3

Gl(13n) _2+--}--1 G2(13n)}jl +-2 m G3([._l)2q
L I, o 2

3 =F+ 4--_-t°2G2 ( [3n )_]I---(°2GI ( [_,, )r12
L ' L

(1)

w,here

Aha (n=1,2,3,4) is a time dependent amplitude of the nth mode.

rli 0=1,2,3) are angular displacements about roll. pitch and yaw axes.

GI([3n) = f3( [3n)Aln+f4( [3n)B ln+f5 ( [3n)Cln+f6( [311)Din

G2([3n) = f3( 13n)A2n+f4 ( 13n)B2n+f5( 13,,)C2n+f6( Bn )D2n

G3( _n ) = f3( [3n )A3n + f4( 13n)B 3n

f3 ( 13n) -
sin(13nL) LCOS(13nL)

F

132 13nI1

cos ( 13nL) L sin ( DnL) I
f4( 13n) - +

13,132 13nrl 1

fs( ) = -
Lcosh ( 13nL) sinh ( 13nL)

+

2

L sinh( [3nL) cosh(13nL) I
f 6( 13n) - _"

132
1] n

F = Fx l _xSxn(-L)+V2xSx,, (-2L/3)+Vlx%n I-t./3}J

+ lay[ V3y_,n(-L)+ V2ySyn(-2L/3)+ Vlv S v. (-I/3_ 1
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S xn(Z) = A In sin( IBnZ) + B Ifi cos ( [3nZ ) + C In sinh( [37/ + D l,, cosh (13nZ)

Syn(Z) = A2nsin(lBnZ ) +B

n (Z) = A3nsin( IBnZ) +B

2n COS(_Z) +C2n

3n_os ( _3,'Z)

sinN [_Z) + D2n cosh (_aZ)

13n= 13n2 El
GA

. System Equations without Flexibility and External Forces

., ,, ,.

rll lxx-rl2 Ixy -r13 Ixz -t°0rl3( lxx-Iyy + lTz ) -coot I, Iv>'

2
- 4_02r I1( I zz -Iyy ) -032 r13 Ix7 - "_¢''o q2 lxy = 0 (2)

°, ....

r12 Iyy +l"lllxy + "q3 Iyz- t00rlilyz +c°0rl3 lxy - 3_'q llxv

+co 2rl 3Iy z +3oa 2rlg(lxx-l_z ) =,' (3)

"q 3 Izz -_ I|xz -_2 lyz + COorl 1( lxx -lyy + lzz ) -roorl 2 lxy

where

|xx

lyy

2 _(,_2 rl _( I -1 ) = 0-4m2rlllxz +3°aor12 ly z - .... yv

+ MR(L2+y2 )

+ Mr_L2 +x2 )

= i 1 + IR 1+ MI__
3

= ls 2 + IR2+ M_______
3

lz z = is 3 + IR3+ MR(X2 +y2 )

(4)

Ixy = MR XY

lxz = ls4 +MRXL

_z = M R YL
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3. SystemEquations with the First Four Flexible Mocles

rlllxx -rl21xy -r13 Ixz- 600 r13 ( Ixx - lyy+ lz7) -(ooq,l• , V 7

-4602 rl,( lzz - lyy)-602rl3 Ixz - 36023q21 v

4 " 4 4
+ X A d - X A d + £ ,,'\ cl

n=l n In n:l n 2n 11---I n 3n = Tx (5)

.... _ 600Iyz +r13600[xy -360 2 rillrl 2Iyy + rl llxy + _ 3Iyz rl l

4

+602r13Iy z + 3602rl2 (l×x-lzz) + X _, d
" rl= l n 4/1

4

E A n Cl5n =Ty
ll_: I

(6)

_3Izz-_ llxz- _2Iyz + "q1600( |xx- lyy+ lzz ) -(OOr121

- 4,o2rlllxz+ 3602r12Iyz-602r13(l×_ - Iv, '

4 '" 4 4
+ X A d + X A cl _ Z '\

n=l n 611 I1 -rII = l , I1 11:1

d = T
T1 ,_11 z (7)

where

lxx, lyy, Izz, lxy, ly z , I×z are same as in 2.

Tx = MxU x + FyL[VIy/ 3+2V2y/ 3 + V3_ ]

T.v. = MyUy + FxL[VIx / 3+2'V2x. / 3 + V3,< l

Tz = MzU z + XFyV3y-YFxV3x

B. System State Equations

In this section we recast all system equations (1-7) into mnlri'< form.

Let

X =[ rl rl rl A A A A rl rl r I A ,,\
! 2 3 1 2 3 4 I 2 3 1

as a state vector and

1'
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T

u =[ v_× V_y_× v2y %× % % Uy u_ 1

as a control input. We then set up the system state equations hv Iwo different methods and get the

state matrix and influence matrix, respectively.

l. Method of Ref[1]

Generic modal equations of the beam:

=,- • - m m

A1.. A1 _l _1 ql

A 2 _ A 2 _ . _ • _

•. +[;,', +[D.I_i2 + _j .02 + '-',J'_:
A3 '- A 3 - .. - .

'_4 A4 .03 .0_ rt3

System equations without flexibility and external forces:

Y u n2, + LE_jn2 + Eoi n2 = 0

"031 "q3 r13

System equations with the first four flexible modes:

. , r. ,=._ -- _ -- . ,==1

" I All
nl A_l ";"t •

I

" ' ] n _'
"0

3 [ '_41 _4 i

""I

T11

+ E,_i r12 I
=

"q31

+[Et_

A
1

A 2

A 3

A 4

B

Vlx

Vly

/2x

V2y

/3x

/3y

i u
i xl

e] L y]
I
i

!u,,I

We then recast, eq(9) by inverting the matrix iE[] -I

m .

Vlx

gl y

V2 x

"V2y

V3x

V3y

(8)

(9)

(10)
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J - 'E
.:4 r13 _3 1

After substituting eq(1 1) into eq(8), the result is,

(11)

A1
inl

A2 = A2 -_ .
A3 -[Dt] A3 -[I,3-D2E i E:] "Q2 -[D4-D-,E I IE5]lrl2

'_'4 .A4 q3 Lrl3

i

Vlx I
'vlv I

V2x I

+ [F] v2,,1(12)
V3x I

V3v I

or briefly

" _ [_]v= [c,]_-[c 2,_ +[c3]_ + (13)

where

= ITA [ A 1 A 2 A 3 A 4

= [ al A2 A3 A4 ]T

V = [ Vlx Vly V2x V2y V3x V3y ]T

[c,!- - [_]
-1

[c2l = - [D3- D2E , E_
-I

[(]3] = - [D 4- D2E 1 E 5]

Then eq(13) without the external forces is substituted imo _'qfl(_} with the restllt

= [c5]_,+[c, _ +[cJ_ + .,-,_A+ [,,_],..,.[,,,]u (14)

where
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- [_, _ _]_'

A-[ A 1 A 2 A 3 /_4]T

U = Uy U z

[C 4] = - [E-I1 (E3 +E

[c_]= _ [_-_1 E4]

[cj=-[_-'i (E5 +E

[c_]=-[_.-'i (E6 +E

-!

[M_.=[_, M,]
-I

[M4] = [El M 2]

2 C 2 )]

2 c3)]

2C1)]

Eqs(14) and (13) may be combined as follows:

C 4 C 6
_- +

C 4 C3

The system state equation becomes

x=[_]_ +[.]_
where

[A]

olo:_ i o
'o"'!"o"_o....:....i

....
c3! c,:. c21 _

¥1 B

F

\
• M 4

F ()

(15)

2. Direct Method

The generic modal equation (eq(8)) and system equalic_n !¢,ciI I())}may be directly combined

to yield:
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-E 3

-D 3

-E

0 4 D A

(16)

Eq(16) may be rewritten, following the inversion of the acceleration coefficient matrix, as

rI l 3 -E4 1 5 -'E6 rl
= +

X 2 3 0 D 2 I 4 DI A

[  l[vlo+ E _ M (17)

D 2 F U'

or briefly

(18)

E 1 -E
[A'] = 3 4

D2 3 0

where

[_']= :]E1E I 5 -E
D2 4 D

[ :][B'1- E' M,
D 2 F

We can get the system state equation from eq(18), that is

x-- [A]x + [,,] u
where

(19)

' ] [:[,,] [o:,= and [B] = ......
A_' .A B
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':. Control Synthesis -- LQR

The system st.ate equation can be r'eDr'esented as

,_ = (A] X + {S] ,J (20)

An L,gR cost function is selected as foi]ows:

.J = / (xTQx uTRu) dt (21)
O

The optfmal coDtr'o], U, based on the LC, R theor'y is

9i yen by

U = - [R-1BTp] X (22)

wher'e F' is the positive definite solution of the steady

state £icattf matr'fx equatio_:

PA _ AT# - PBR- 1sTF, * ,.} -- C,

The closed -toop system equation becomes

= [A-6K] X

Let X(0} be an i i_it.i.al state vec to

assumed ,_ and R Denatty mat_'l'ces, the c

_'espooses can be s1 hill ated as

X(t) = e[A-BK]tx 0)

wiqicb i c, based on the feedb,sck contl'ol 9iven Dv

U(t) -- - KXfti

(23)

(2_,)

E,as.,;:i or_ some

osed oop civnami c

<2s)

(26')

Th,_ totai tOl','_Ll_' ;lnPu #,3e ,qboLlt _lle,. f t_l'ee, axes at'e

T;, =

w h _ I' e

1= ITv,: t', I ,:i_:
O

I'_ ITs-'(t:' I _:tt
O

("_7 ;

_28,,

(29')

-- I i'i : i,.12 "

ORIGINAL ,:,..:.{, :£ ."i,
OF POOR QUALt i"it'
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O. Numer'ica I Results

Tile ORACLS control software in tile ]:BN computer' system

was used to calculate the st,ate matrix [A] and fnfluence

matr'ix [B] and to simulate the closed loop system responses

as we]] as the total tol'que of the system for given sets of

initial conditions.

We select time force factors, F x = F v = i and torque

factol's M x = My = 14z = 1, which means that the components

of V and U r'eflect the actual actuator' force and $,huttle

tor'que values. Accor'ding to the SC©LE configur'atior_ and

parameter values (listed in the Append]x), tlqe [A] and [g]

matrix values of the metilod of Ref. [1] .and the ,J_'ect

method a_ e 1 ist _d in Tables 1 ,2,3 , ,and g,

_e select the in_t;al states

XI (0 = 6 ,:le,3r'ees

X2_O = X 3 O) = X_(O_ -- Xs_O) -- X6(O} : :(7 O) -- 0

,and the diagona weightlng matrices ,gs:

trace ,-_, _- (i_7, 107 . 107,5X!05,106,5.{10_i,5_ 0-''

i0. iO, iO, iO, 10, 10, ;O1

R -- [ l@3,100, I00, lO0, 00, 100,0.001,0oOOi ,O,OO1 ]t ,,ice

The s_,mu lation ot ti-i_, optim,-_ c],osed, looi- _ svstenl

r'esmonses, usln.-4 both the method ,of i;:.}t. I. i ] ::.._d the: dir'ect

method .-_q_,: o !ott_.d ii_ F ;,;is. 1 , 2, 3 ::_nd _'_,

The t,sr_. _, i c.s,n _1i',si. t,}i ,:_:j_. - i !ill5 i_1 i 3es ,:: T F I'1r_,. :s/s f9m.

'. £::u] _ £ : .abt_t_' t;;.: ] :;;:i ; :I_ _ 3u..%2_! rt:-- ;: --:.-.: L,v the

_n;_th,:.:: ,::,,f :-;:er. I ! ] :_i_d ::i ,250 ft-l% se',: r__ _ th_ }ii :,;t

OF POO_._ _:,. .... ,,
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method, The torques needed about the other' two axes ar'e

much less than the components about the J'oll .axis. A]so,

the maximum torques of the system a_'e 6,525 ft-lb for the

method of Ref, [ I] and 5,802 ft--]b in the direct method.

E. Conc] us_ons

1o Bv comparing the results of the method of Ref. [1] and

tt_e direct method, it is seen that the results are similar"

to each other'.

2. In the responses r'esutting from the ctir'ect method for"

the same initial d_solacement about the roll axis, it _s

seen that the first fou_ flexible modes are qener'aliy

.excited mor'e than 1:o_' the results of the method of Ref, [1],

3, If no for'ce act J__tor's are addled to tile beam and

_-eflecr. ol" complete danlpin,_ of tl_ modal r'espoilses _'equir'es a

much longer ti_e (Fig. 6) than when the for'ce actuators ar'e

util[zed together with the Shuttle tol"q:Jer':; (Figs. 2 and 4).

However', the use of fo_'ce actuators results in initially

]ar'ger' ovel'shoots _s compai'ed w_ th the __:ase depicted in F_g.

6.

%. The system responses a_'e dependent on the for'ce actuator

l<,c.stions arrd tl_e wei.aht]ng matrices (,g,,S::, valuss. Suitable

va i ues of the pena] :':/ ma tr' fces alld actua Eor" 1 oc,st foils

z:hc, uld be selected so tl_,P,t the svst,ern c,ont_'ol becomes

op t 1ma _ .

3. From the s/stem .an._ivs;-:, ,._,:_ r(n:.] t',_-% ti }xib_] itv of the

-;'20L E _;',st-_;: i.s n,ct q_ .:_t ] ../ 2::::: _, t.£J :.i,.._i _,,.._ tvr, i: .::1 _::ati on
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keeping operations. System r'es#onses and the total tor'que

impulses needed ar'e similar' to the igidized SCOLE system

(see Ref. [ 1]).

F ,

l.

Reference

Cheick M. Diar'r'a, "On the Dynamics and Contr'oi of tt_e

Spacecr-aft Control Labor'ator'v Expe_'iment (SCOLE)

Class of Offset Flexible Systems," Ph.D. dissertation,

Howar'd Univer'sitv, 1988. Also Contr'act Repot't. Par't ZI,

NASA Grant NSG-141 4, Suppl . 9, January 1988.
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O. APPENDIX

I. Format of Submatrices

I Ixx Ixy Ixz 1
IxyEl = lyy ly z .

Izx Izy Izz

I dll d12 d_s d14 1
E2= d41 d42 d43 d44

ds I ds2 dss ds*

Ks--

- 0 -_o (Ixx-Iyy+Izz)

_SIxy

0

I d2 : d22 d2s
E4= ds I d52 dss

d71 d72 dTs
d,,]ds4

d74

K S-

-- -4_o 2 ( Iz,- Iyy)

- 3_ Ixy

-4_o2 Izx

-3_2OIxy

3_02 (Ixz- Izz)

3_o_ly z

-_Izz

_'2oly z

-_02 (xx- Iyy)

I ds x ds z ds 3 ds _ 7
Es= 0 0 0 0 I

ds I ds2 ds3 ds_
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D{--
_,_ o

o _,{
0 0

0 0

0

0

0
O]0

O.

I s2(__)/L
D2 = Gz (S2 )/L

G2 (S3)/L

G2 (S4)/L

-Gl (Sl)/L

-G l(S2)/L

-G I(S_ )/L

-G_ (S4)/L
O]0

0

0

D3=

- 0 2_,oG3(s;)/L -2_o_2 (s,)/L -

o 2_oG3(__ )/T. -2_o_(%)/n

0 2_oG_ (S_ )/L -2_0G2 (S_)/U

- 0 2_,0G] (S_ )/L -2_oG2(s_)/L -

n4-

- 4_G 2(_)/n

4_G2 (_2)/L

4_o2G2(_)/L

_ 4_G2 (S4)/L

-3_o_G I(s,)/L 0 -

-3_G, (s2)/L 0

-3_02G I(s3 )/L 0

-3_G, (_4)/L 0

.-

-- FxSxl (-L/3) FySy I(-L/3) FxSxl

FxSx2 (-L/3 ) FySy 2(-L/3 ) FxSx2

FxSx3 (-L/3 ) FyS,:_(-L/3 ) FxSx3

- FxSx4 (-L/3 ) FySy 4(-L/3) FxSx4

(-2L/3)

(-2L/3)

(-2L/3)

(-2L/3)

Fy Sy,

Fy Sy2

FySy 3

FySy 4

(-2L/3 )

(-2L/3 )

(-2L/3 )

(-2L/3 )

FxSx, (-L)

Fs (-n)
x x2

FxS,_ (-L )

FxSx_ (-L )

Fy Sy,
FS
Y Y2

Fy Sy 3

Fy Sy

(-L) "

(-L)

(-L)

(-U) .__l

3.24



I 0 FyL/3 0 Fy2L/3 0
Mz= -FxL/3 0 -Fx2L/3 0 -FxL

0 0 0 0 -YF x
Io

XFy

M2= 0 . 0

0 Mz

2. System Flexible Mode Shapes

(I) Method of Ref.[l] Equation (For nth mode)

d2n=M _ [-LSny(-L)-XYe n (-L) ]+Mfz (Sn)/L

d2n=M_o [YSnz (-L) ]

d3n=_ [Mf 2 (S.)/L-MRXe n (-L )]

d_n=Mf I(on)/L+ [IR2+M R (X 2+L 2) ]en (-L)-M_LSnx(-L)

dsn=_0MRX[ Le n(-L) +2Snx(-L) ]

den=MR[ XSny (-L)-YSnx (-L) ]

d_n=MR_oXYen(-L)

dsn=_YSnx (-L )

3.25



(2) Direct Method's Equation (For nth mode)

dln=Mf2 (Sn)/L+_LSny (-L )+_XL, n (- L )+MRY_ S" ny (-L )

-MRXYS "nx ( -h ) + IR[ S "yn ( -L )

_n=2_o_YSnx (- L )+ (-2_oMy_Y2 -_o IR I+_o IR=-_o_ x2-_o IR_ )en (-L )

dan=_ [Mf2 (Sn )/L+M_XYS "nx (-L )__y2 S yn (-L )

+MRLSny (-L) +IR2S'yn-IRjS'yn (-L) ]

d4n=Mfi (sn)/L-_LSnx(-L) +IR2S'nx (-L) +MRYLe n(-L)

-M.XYS'ny(-L)

dsn=-MR_oXSnx (-L )+_oYLS "ny (-L )-MR_oXLS "nx (-L )+M.RoooXYe n (-L )

dsn=MRXSny (-L )-MRYSnx (-L )+MRXY, n (-L )+_Y2, n (-L )+ IRa, n (-L )

dTn=MR°_ o Y2S "ny ( -L ) +MRo_oXYS "nx ( -L ) -_o IR 2 S "ny ( -L ) +o_ o IR3 S "ny ( -L )

MRXLo_oe n ( - L ) +ooo I R , S "ny ( - L )

d,n=M_YSnx(-L)+MR_XSny(-L)-_I R a n (-L)+_ IR2,n(-L)
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whe r e

fl (Sn )=A1n I Lc°sSnL-0n sinsnLs--T--_ +Bin I LsinsnL+c°sQnL+ I---0n Sn2 Sn2_

[ 1 [LsinSnL c°ssnL 1 _f2 (0n)=A2n Lc°SSnL sinsnL +B2n + sz -_
13n _n2 On '-n -n

+Czn _ sinhsnL-Lc°shSnL LsinhsnL coshsnL+__ 1

S" nx (-L )=Sn [A*nC° ssnL+BlnsinsnL+ClnC° shsnL+D_nsinhSnL ]

S" ny (-L )=a n [A2nCO ssnL+B2n sinsnL+C2nCO shs L+D2n sinhSnL ]

3. System Parameters

(I) Inertial Moment

I, i=905,443 slug- ft 2

I =6,789, I00 slug-ft 2
s 2

1,3=7,086,601 slug- ft 2

Is =145,393 slug-ft 2

IRI=4,969 slug- ft 2

IR2=4,969 slug- ft 2

IR =9,938 slug-ft 2

3.27



(2) First Four Modal Coefficients

Mode No.(n) 1 2

_n I. 19 1.29

" 0. 033 O. 039
n

3 4

1.97 2.54

0.092 0.152

O2n

A1n

Bin

0.274

0.161

-0 196

0.322

0 072

-0 084

0.748 1.24

0.022 0.068

-0.059 -0.063

Cln

D
In

A2n

B2n

-0 168 -0 075

Q--

0 195

-0 039 0 125

0 069 -0 196

-0.023 -0.068

0 O84 0.059 0.063

0.025 -0 105

0.003 0 094

C2n 0 058 -0.167 -0.025 0 107

D2n -0 069 0.196 -0.003 -0 093

A3n -0 032 0.003 0.072 0 011

B3n 0.158E-4 -0.I09E-5 -0.131E-4 -0 123E-5

(3) Other Values

_0=7.27E-5

M=I2.42

_=12 .42

X=18.75

Y=-32 .5

L=-I30

rad/sec

slug

slug

ft

ft

ft

3.28



ORIGINAL PAGE IS

OF POOR QUALITY

[V. Control Structure Interaction - Pr'eliminary Study of the

Effect of Actuator Mass on the Design

of Contr'ol Laws

The dynamics of lar'ge space structures are described

using the f_nite element method as 1:

"" _M X + C + KX = BU (1)

wher'e

X : nxl vector" repr'esentin,_ degr'ees of fr'eedom

M = nxn mass matr'ix

C = nxn damping matrix

K = nxn stiffness matrix

B = nxm contro] _nfluence matrix

U : rex] con_r'o] vector'

Using modal analysis ?- and moder'n control theory 3, stat__

var'_abl= feedback contr'ol laws of the form

_( - F (2)
U = -F r pX

where

F r, and Fp are rate and position contr'ol gain matrices

of appropr'_ate dimensions are designed. To implement the

control law given by equation (2) physical actuators are

needed. These physical a,,:tuators have f_nite mass and,

thus, change the rna__s and stiffness of the structure to be

contr'olled. Th_s mass can be as much ,a._ fifteen percent of

t_ Thus the contr'ol laws designedthe uncontr'olled str'uctul'e.

without taking tt]iz ma_--..s into con_--i-:ter'__tion !have to be

r'eev,_luated toi" their stability areal per'for'nTar_ce de.=_r'adation.

._s_-sumingAM and A X are the cl_anLqes i i] the mass at, c) stiffness

4,1



matrices due to .actuators the dynamics of the controlled

system can be wf'_tten as:
,B

(M÷_M) X + (C_-BFr,) _ + (K + Z_K+BFp) X = 0 (3)

Since the control law is designed for' the stability of the

c:ontr'olled system, the matr'ices _t, C+BFr,, and K are positive

definite matr'ices. 5 If the changes in the mass matr'ix and

stiffness m.atr'ix,A_4 and &K, are a]sc, assumed _.o be positive

definite then the matrices (M+&M), (C_BFr.), and (K+Z&K*BFp)

are a]so positive definite. Thus, equation (3) is stab]e,

though per'formance degradation _.an not be commented on. The

assumption thatAM and Z_l< are positive is a v.a]id

,._ssumption_ .as the dynamics of the oscillator',/ motion of the

structure with Li_e .added actuator" m.-:_sses can be described

based on the finite element method or" ener'gy conservation

techniques_ and thus, (M+/_I) and (K4/,K) must be positive

definite, As (M +/_14), (I<_K) are positive definite and (M+ _

_), (K+BFp) are positive defipite, the matrices (_+_4), _+

Al<+SFp) ar'e .also posftive definite. T}TLIS, as _I and K are

positive definite and (_4+&M) .and (1<*_t() are positive

definite, &M .and AK are pc.s_tive definite. The effect of

the actuator" mas_ on the structural dampin.g is not

considered her'e.

In this ana VSfS the modal t_'unc,ation is not tail, el7

into account .z:nd thus, the contr'o] spi]l-over' #r'ob]em w_]]

not ar'ise. The per'for-mance de,_radation is aiTa]yse,:J USllqg a

two mass, r._,to __¢r'in._, t',.,_o actuator" system.

4.2



Numerical Example:

The two-mass two-spring system _s shown in F_gur'e 1 and

its equations of motion are wr'{tten as:

[_1 0 "m2 L'4d+ -k= "2 x .= (4)

 ' "i/lltilil::,'



Numerical Example:

The two-mass two-spring system is shown ]n Figure 1 and

its equations of motion ar'e written as:

The contr'ol law of the form

x21 s)

is deslgned with the following numer'ical values for" <he

mass, stiffness and contr'ol gain matrices,

m 1 = 2, m 2 = l, k I = _, k 2 = 1

fll = l, f12 = f21 = 0, f22 = 1

The nunler'icat simulation is conducted varvin,? tile masses and

stiffnasses, one .at a time, and the close,d-loop el',genvalues

ar'e tabulated in Tabie ]. From Table l, it can be observed

that the change in mass, too, has a maximum .effect on the

,:ie,gradats, on of the closed-loom eiqenva ues. A ]5% change in

m.) _ushe,:t th,L tef _ c- ....m)=.t ,aiqenv_lue t'o the r'iqht bv ar'ound 1 l%

while the second e_genvalue ,no,JecJ to the Fight bv al',:s,_nct

_-%, A I S?.. ch,:J_,:_: ii_ m i m°'ve<:._ tiT:_ ,= _,-;env._ f _le <:;f:_sesr, tc the

;m-_.qi r.];'v .::;< ; : to: the i'ight t:,

.ex,im_: ] -_ ,3r_c! numel"ic}11 :51 mu J,3t

4.3
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actLlatol" masses affect tb, e _e_'formance of the contl'o] law

that is desi,_tned without takincj these masses fnto

considel'ation, It is also worth,ut]ile to observe that a

change in the stiffness moves the ei,_envalue_ to the r'i,:_ht

as well as to the left aod can be exolained as the effect of

the incr'ease in the stiffness on one m,aas ol" the other'.

To under'stand the pel'formance degradation due to

actuators an exi]austive simulation of the closed-lc, op

contr'olied system has to be done with the f©llo_,ring

.:on_fder'atfons :

I. The masses needed to implement specific cont,'o}

Tortes have to be evaluated,

2. The change _n stiffness due to chanL_e 1 n mass

haz to be dete_ mined.

_. :_imulatfon /]as to be conducted _fth ch,:inqes _n the

tota i m,_s: nnd st_fT__ezs m,_.t_'ic_s !':thor th.Jn

individual mas:_es as is done in thi s studv.

A cor_Ll'oi 5',/5teul d_.::bi,::lp, t,:a .Bc_ _fllmo(l,e£.:?, the: effect of

the a.:stuato_" masses has to be done in ftar'_ti ,e fasi_ffon

law _ s ,_'_'iveddvnamfc model ul_ti I .._ s_tiL_rar'tor'v cont,',:,

,

14a_ t', FI. J
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Percentage change in
masses and stiffnesses

Closed loop eigenvalues

(complex conjugate pairs)

m I m 2 k I k2 i 2

0 0 0 0 -0.472 _ j0.710 -.277 _ j0.163

15 0 0 0 -0.464 _ j0.709 -.254 _ j0.154

0 15 0 0 -0.420 _ j0.684 -.268 _ j0.163

0 0 15 0 -0.477 + j0.729 -.272 + jO.171

0 0 0 15 -0.465 + j0.756 - .284 + j0.168

Table 1 : Closed-loop Eigenvaiues due to Changes in Mass
and Stiffness Values.
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V. CONCLUSIONS AND RECOMhtENDATIONS

The maximum pr'inciple of Pontr'vagin has been applied to

the rapid maneuvering problem of the planar', flexible

or'bitfng SCOLE. T!le r'esulting two-point boundary value

pr'oblem is solved by applying the quasilinear'ization

technique, and the near-minimum time Js obtained by

shortening the maneuvering time in a sequential manner' until

the contr'ols ar'e near" the bang-bang type. The r'esults

indicate that responses of the nonlinear' system for the

flexible modal amplitudes may be significantly differ'ant

from those of the corresponding ]inear'ized system for" r'apid

slewing maneuver's. This resear'ch is cur'r'ently being

extended to the three dimensiona] slewing of the flexible

SCOLE system,

From an analysis and simulation of the SCOLE station--

keeping dynamics it is found that the flexible vibr'atior, s of

the mast are nor. g_'eatly excited during typical station-

keeping operations. System responses ar'e highly depend_nt

on the force actuator' locations and the numet'ical values of

the state ,and contI'ol penalty matrices included in the LQR

control law design. For'ca actuator's mounted at 1/3 ,and 2/3

of the mast l enqth along, the mast at'e effective in

supp_'essfng the flexible mast vibr',ations.

A pr'elimin,al'v examLnation of the effect of ,_ctuat,sr'

mass on the design ot contl'ol laws for' lai',qe flexfbl-e space

::"/stems demoi_stlate= th,r_t ,actuatoi nl._:_:s::e= c-_{_ t nt !uence the
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performance of the closed-loop syste4n where the contr'ol law

has been designed without taking these masses into

consideration, To understand better the possible degr'ada-

tion in performance due to the pr'esence of actuator" masses

additional studies are required to accur'ately evaluate the

changes in the stiffness matrix due to specific actuator"

masses, and simulations must be performed incorporating

changes in the total mass and stiffness matrices, rather

than individual masses as was done here,

Finally, the cur'r'ent (1989-90) grant work has been

redirected so as to lend greater support to the new

Contr'ols/Structures Interaction (CSI) pr'ogram and focusing

on specific CSI evolutionary configur'ations_ in addition to

the treatmenL of the SCOLE 3-C, slewing problem.
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